Basolateral potassium (IKCa) channel inhibition prevents increased colonic permeability induced by chemical hypoxia.
نویسندگان
چکیده
Major liver resection is associated with impaired intestinal perfusion and intestinal ischemia, resulting in decreased mucosal integrity, increased bacterial translocation, and an increased risk of postoperative sepsis. However, the mechanism by which ischemia impairs intestinal mucosal integrity is unclear. We therefore evaluated the role of Ca(2+)-sensitive, intermediate-conductance (IK(Ca)) basolateral potassium channels in enhanced intestinal permeability secondary to chemical hypoxia. The effects of chemical hypoxia induced by 100 μM dinitrophenol (DNP) and 5 mM deoxyglucose (DG) on basolateral IK(Ca) channel activity and whole cell conductance in intact human colonic crypts, and paracellular permeability (G(S)) in isolated colonic sheets, were determined by patch-clamp recording and transepithelial electrical measurements, respectively. DNP and DG rapidly stimulated IK(Ca) channels in cell-attached basolateral membrane patches and elicited a twofold increase (P = 0.004) in whole cell conductance in amphotericin B-permeabilized membrane patches, changes that were inhibited by the specific IK(Ca) channel blockers TRAM-34 (100 nM) and clotrimazole (CLT; 10 μM). In colonic sheets apically permeabilized with nystatin, DNP elicited a twofold increase (P = 0.005) in G(S), which was largely inhibited by the serosal addition of 50 μM CLT. We conclude that, in intestinal epithelia, chemical hypoxia increases G(S) through a mechanism involving basolateral IK(Ca) channel activation. Basolateral IK(Ca) channel inhibition may prevent or limit increased intestinal permeability during liver surgery.
منابع مشابه
Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line.
Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A231...
متن کاملSecretory activation of basolateral membrane Cl- channels in guinea pig distal colonic crypts.
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or))...
متن کاملType 2 diabetes: increased expression and contribution of IKCa channels to vasodilation in small mesenteric arteries of ZDF rats.
Impaired endothelial function, which is dysregulated in diabetes, also precedes hypertension. We hypothesized that in Type 2 diabetes, the impaired endothelium-dependent relaxation is due to a loss of endothelium-derived hyperpolarization (EDH) that is regulated by impaired ion channel function. Zucker diabetic fatty (ZDF), Zucker heterozygote, and homozygote lean control rats were used as the ...
متن کاملActive K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon.
Colonic K+ secretion stimulated by cholinergic agents requires activation of muscarinic receptors and the release of intracellular Ca2+. However, the precise mechanisms by which this rise in Ca2+ leads to K+ efflux across the apical membrane are poorly understood. In the present study, Northern blot analysis of rat proximal colon revealed the presence of transcripts encoding rSK2 [small conduct...
متن کاملCytosolic ionized Ca21 modulates chemical hypoxia-induced hyperpermeability in intestinal epithelial monolayers
Unno, Naoki, Shozo Baba, and Mitchell P. Fink. Cytosolic ionized Ca21 modulates chemical hypoxia-induced hyperpermeability in intestinal epithelial monolayers. Am. J. Physiol. 274 (Gastrointest. Liver Physiol. 37): G700–G708, 1998.—We reported previously that ATP depletion induced by glycolytic inhibition or cellular hypoxia increases the permeability of intestinal epithelial monolayers [N. Unn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 300 1 شماره
صفحات -
تاریخ انتشار 2011